

Bioeconomy inonovation week | March 3, 2021

Dušan Drabik – Wageningen University, BioMonitor project

FOR BOOSTING THE REGIONAL BIOECONOMY IN CEEC

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818351

How Could the CEE Countries Better Assess their Bioeconomies

BioMonitor - Monitoring the Bioeconomy

H2020 project

- 18 partners led by Wageningen University, The Netherlands
- Reduce the information gaps present in the bioeconomy
- Restructure existing data and modelling frameworks

- Availability of data for material flow monitoring in CEE countries
- How to assess the dynamics of the development of the CEE bioeconomies

Material Flow Monitoring

- Why important?
 - Can't manage what can't be measured
 - Input into modeling
- We follow and test the approach of Statistics Netherlands (CBS)
- Four case studies Italy, Spain, Slovakia, and Latvia

What we learned so far

- Statistics do not distinguish bio-based and fossil-based industries/products
- Many statistical classifications (NACE, CPA, PRODCOM, HS/CN) used to collect data (conversion tables needed)
- Publicly available data often for broad categories of goods/industries

- Prices often only for representative goods
- Traditional sectors (e.g., agriculture, ag products) well documented but not so for mixed sectors/goods
- Statistics on flows from raw materials (including biowaste) to end products lacking
- Small companies producing bio-based goods have no obligation to report data or their data may be confidential

How to assess the CEE bioeconomies?

Need indictors

- 27 indicators to support the Europe 2020 Strategy
- 100 EU SDG indicators
- But is a subset of indicators enough (e.g., number of people employed, value added, labor productivity)?
- Snapshots in time do not provide the whole picture

What we do

- Any number of well-defined quantitative indicators
- Normalization as units and magnitudes differ
- Provide a dynamic picture
 - Is a bioeconomy as a whole growing?
 - Which of its aspects are improving or lagging behind?

How do we do that

Adjust the indicators such that more is better

- Normalize them
- Rank them, taking into account the whole time period (not only beginning and end)
- Study the intra-distribution changes

Development of select. EU bioeconomies

-2--3-

1 1 1

1 1

2008 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

1

1 1

Year

The most progressing and the most regressing indicators over 2006-2016

Most progressing indicators		Most regressing indicators	
Poland			
Tertiary educational attainment	0.299	Energy productivity	-0.294
Most progressing indicators		Most regressing indicators	
Poland			
Tertiary educational attainment	0.299	Energy productivity	-0.294
Share of renewable energy in gross final energy consumption – electricity	0.298	Surface of marine sites designated under NATURA 2000	-0.293
Patent applications to the European Patent Office (number per million inhabitants)	0.298	Gross domestic expenditure on R&D – business enterprise sector	-0.280
Patent applications to the European Patent Office (total number)	0.298	Adult participation in learning	-0.255
		Private investments, jobs, and gross value added related to circular economy	
Share of renewable energy in gross final energy consumption – heating and cooling	0.296	sectors – value added at factor cost – % of GDP	-0.183
Slovakia			
		Private investments, jobs, and gross value added related to circular economy	
Tertiary educational attainment	0.297	sectors – gross investment in tangible goods – % of GDP	-0.229
Energy productivity	0.295	Adult participation in learning	-0.223
Share of renewable energy in gross final energy consumption – electricity		Gross nutrient balance on agricultural land – phosphorous	-0.206
		Private investments, jobs, and gross value added related to circular economy	
Greenhouse gas emissions (index 1990 = 100)	0.290	sectors – gross investment in tangible goods – million euros	-0.194
Share of renewable energy in gross final energy consumption – all sectors	0.289	Employment rate of recent graduates	-0.091
Latvia			
Private investments, jobs, and gross value added related to circular economy sectors			
-% of total employment [V16111]	0.299	Ammonia emissions from agriculture (tonnes)	-0.286
Surface of marine sites designated under NATURA 2000	0.298	Ammonia emissions from agriculture (kg per hectare)	-0.266
		Private investments, jobs, and gross value added related to circular economy	
Tertiary educational attainment	0.293	sectors – value added at factor cost – % of GDP	-0.264
		Private investments, jobs, and gross value added related to circular economy	
Share of renewable energy in gross final energy consumption – electricity	0.288	sectors – ross investment in tangible goods – % of GDP	-0.252
Circular material use rate	0.282	Gross nutrient balance on agricultural land – nitrogen	-0.245

Short-term and long-term dynamics of bioeconomies

One-year transition matrix				Ten-year transition matrix							
Poland											
	Q ₁	Q ₂	Q ₃	Q ₄		Q ₁	Q ₂	Q ₃	Q ₄		
Q ₁	.58	.28	.09	.05	Q ₁	.00	.30	.40	.30		
Q ₂	.23	.35	.23	.18	Q ₂	.00	.45	.27	.18		
Q ₃	.14	.17	.38	.32	Q ₃	.33	.11	.11	.44		
Q ₄	.07	.17	.20	.56	Q ₄	.73	.18	.00	.09		
Ergodic	.254	.242	.218	.286	Ergodic	.252	.288	.211	.249		
Slovakia	0	0	2	2		2	0	0	0		
	Q ₁	Q ₂	Q_3	Q ₄	_	Q ₁	Q ₂	Q_3	Q ₄		
Q ₁	.47	.27	.13	.13	Q ₁	.00	.40	.50	.10		
Q ₂	.27	.32	.23	.17	Q ₂	.10	.10	.30	.50		
Q ₃	.14	.29	.32	.25	Q ₃	.20	.30	.10	.40		
Q ₄	.11	.11	.29	.50	Q ₄	.64	.18	.09	.09		
Ergodic	.245	.245	.243	.267	Ergodic	.245	.244	.244	.268		
Latvia											
	Q ₁	Q ₂	Q ₃	Q ₄		Q ₁	Q ₂	Q ₃	Q ₄		
Q ₁	.53	.22	.18	.07	Q ₁	.10	.10	.40	.40		
Q ₂	.22	.37	.26	.16	Q ₂	.20	.10	.30	.40		
Q ₃	.16	.26	.33	.25	Q ₃	.00	.60	.20	.20		
Q ₄	.08	.14	.22	.56	Q ₄	.64	.18	.09	.09		
Ergodic	.243	.244	.247	.267	Ergodic	.245	.243	.244	.268		

Contributions

- Test the implementation of the CBS MFM methodology in CEE countries
- Help national statistical offices to develop their MFM systems (knowhow)
- A novel framework to assess the dynamics of the evolution of EU bioeconomies

Monitoring the Bioeconomy

E-mail: <u>Dusan.Drabik@wur.nl</u>

Our website: www.biomonitor.eu

A BioMonitor video worth seeing: <u>https://www.youtube.com/watch?v=oUqGHRxJ7c8</u>