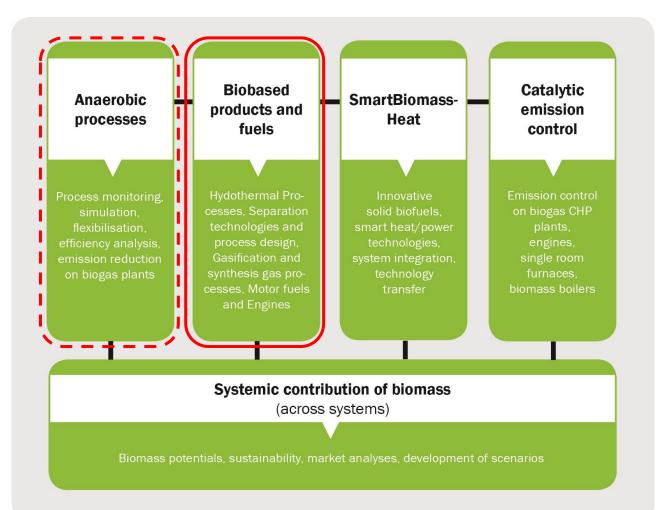
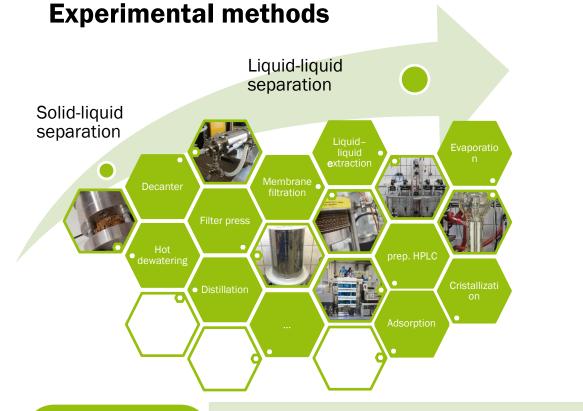
Deutsches Biomasseforschungszentrum

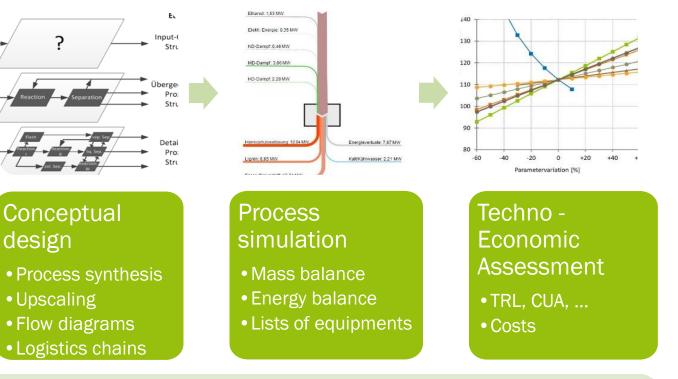


Biorefineries – Biobased Products and Fuels

Exemplary R&D projects for the development of biorefineries

The research focus areas at the DBFZ




Working Group Separation Technologies and Process Design

Strengths

Biorefineries concepts und process simulation

- Attractive scale (1 100 kg/h) for downstream processes, which can be feasibly transformed to larger scales
- Expertise in the evaluation of biorefineries based on process simulations
- Synergies through the use of process simulations in the development of separation cascades

Exemplary projects

KomBiChem^{Pro}

Wood based biorefinery

CapAcidy

Biorefinery based on anaerobic fermentation of wet biomass

Exemplary projects

KomBiChem^{Pro}

Wood based biorefinery

CapAcidy

Biorefinery based on anaerobic fermentation of wet biomass

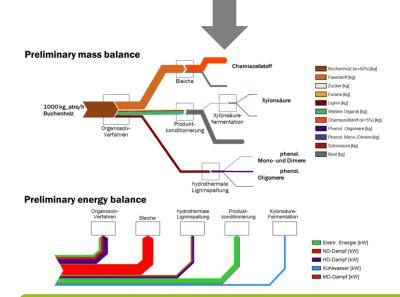
KomBiChem^{Pro} Motivation and Aim

Basis for project: organosolv process @ Fraunhofer CBP

Aim of the KomBiChem project: Development of fine and plattform chemicals by a combination of chemical and biotechnological processes

Products of interest

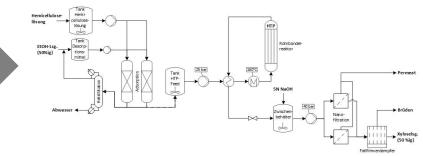
Dissolving pulp


C5-sugars, Xylonic acid, Malic acid Furfural, Furfuryl alcohol, THF 5-HMF, Furandicarboxylic acid

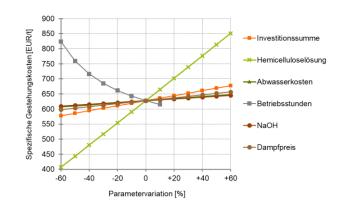
Phenols

KomBiChem^{Pro} Methods

1. Lab scale development



2. Early stage assessment

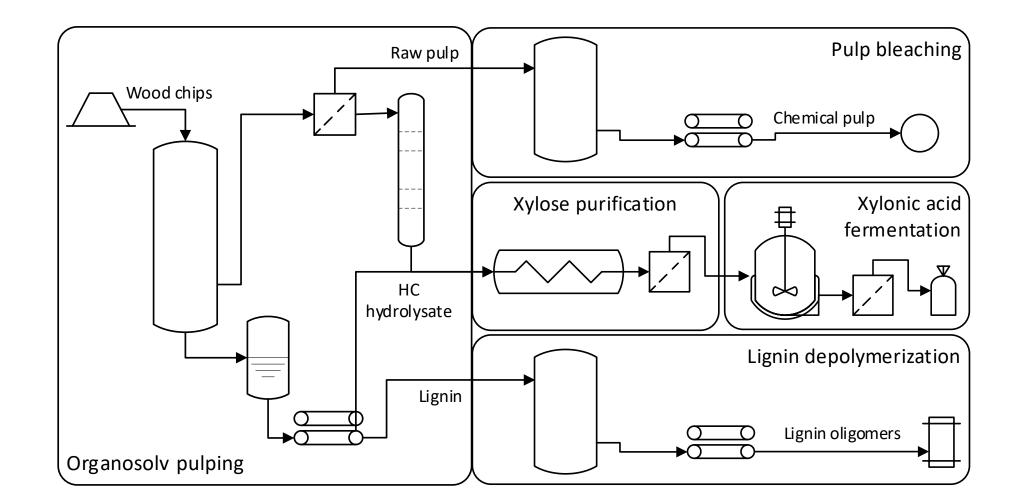


4. Concepts for implementation

5. Final assessment

Pro **KomBiChem**

Main results: demo of entire biorefinery process KomBl Chem^{Pro}


Pulp bleaching Raw pulp Wood chips Chemical pulp Xylose purification Malic acid fermentation HC \sim hydrolysate Lignin depolymerization Lignin Lignin oligomers Organosolv pulping

DBFZ

KomBiChem^{Pro}

em^{Pro} DBFZ

Main results: demo of entire biorefinery process KomBiChem^{Pro}

KomBiChem^{Pro} Main results

The conversion of beech wood into: dissolving pulp, xylose monomers, malic acid, xylonic acid, and phenolic BCD-oligomers was successfully transferred from lab scale to pilot scale (TRL 5)

Products samples were produced

The efficiency of the organosolv process (especially lignin recovery) was increased significantly

Different pathways to valorize the hemicellulose fraction were developed: A combination of adsorption, hydrothermal treatment, and nanofiltration processes, resulted in 90% of the oligomeric xylose in the hemicellulose hydrolysate being converted to monomeric xylose

Production costs and ghg-emissions were calculated for all products

KomBiChem^{Pro} Further readings

Nitzsche, Roy, Arne Gröngröft, Jakob Köchermann, Kathleen Meisel, Hendrik Etzold, Marlen Verges, Moritz Leschinsky, et al. 2020. 'Platform and Fine Chemicals from Woody Biomass: Demonstration and Assessment of a Novel Biorefinery'. *Biomass Conversion and Biorefinery*.

Köchermann, J., Schreiber, J., Klemm, M., 2019. Conversion of D-xylose and hemicellulose in water/ethanol mixtures. ACS Sustainable Chem. Eng.

Köchermann, J., Mühlenberg, J., Klemm, M., 2018. Kinetics of Hydrothermal Furfural Production from Organosolv Hemicellulose and D-Xylose. In: Ind. Eng. Chem. Res. 57 (43), S. 14417–14427.

Nitzsche, R., Gröngröft, A., Kraume, M., 2019. Separation of lignin from beech wood hydrolysate using polymeric resins and zeolites – determination and application of adsorption isotherms. Separation and Purification Technology 209, S. 491-502.

Pufky-Heinrich D, Rößiger B, Röver R, Unkelbach G. Process scale-up for the production of bioaromatic compounds from lignin, Chem. Ing. Tech., 2016, 88, 1229-1230.

Björn Rößiger, Robert Röver, Gerd Unkelbach, Daniela Pufky-Heinrich; Production of BioPhenols for Industrial Application: Scale-up of the Base-Catalyzed Depolymerization of Lignin; Green and Sustainable Chemistry (GSC), Vol. 7, No. 3, 193-202, DOI:10.4236/gsc.2017.73015

Rössiger B, Unkelbach G. Pufky-Heinrich D. Base-Catalyzed Depolymerization of Lignin: History, Challenges and Perspectives in Lignin - Trends and Applications, 2018, ISBN 978-953-51-5674-1.

Rößiger B, Röver R, Unkelbach G, Pufky-Heinrich D. Production of Bio-Phenols for Industrial Application: Scale-Up of the Base-Catalyzed Depolymerization of Lignin, Green Sustainable Chem., 2017, 7, 193-202, DOI: 10.4236/gsc.2017.73015

Schulze, Peter; Leschinsky, Moritz; Seidel-Morgenstern, Andreas; Lorenz, Heike (2019): Continuous Separation of Lignin from Organosolv Pulping Liquors - Combined Lignin Particle Formation and Solvent Recovery. Industrial & Engineering Chemistry Research 2019 58 (9), 3797-3810, DOI: 10.1021/acs.iecr.8b04736

Deutsches Biomasseforschungszentrum

gemeinnützige GmbH

Funded by

Federal Ministry of Education and Research

The project team

Arne Gröngröft Roy Nitzsche Jakob Köchermann Kati Görsch Marco Klemm Hendrik Etzold Kathleen Meisel Franziska Müller-Langer

In cooperation with

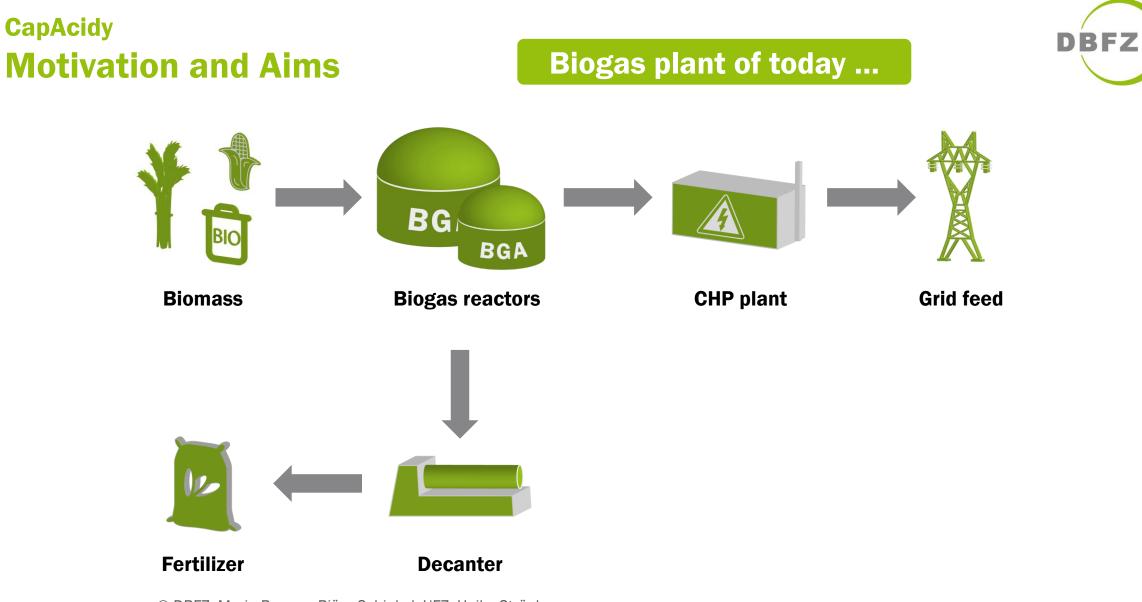
Fraunhofer

www.cbp.fraunhofer.de

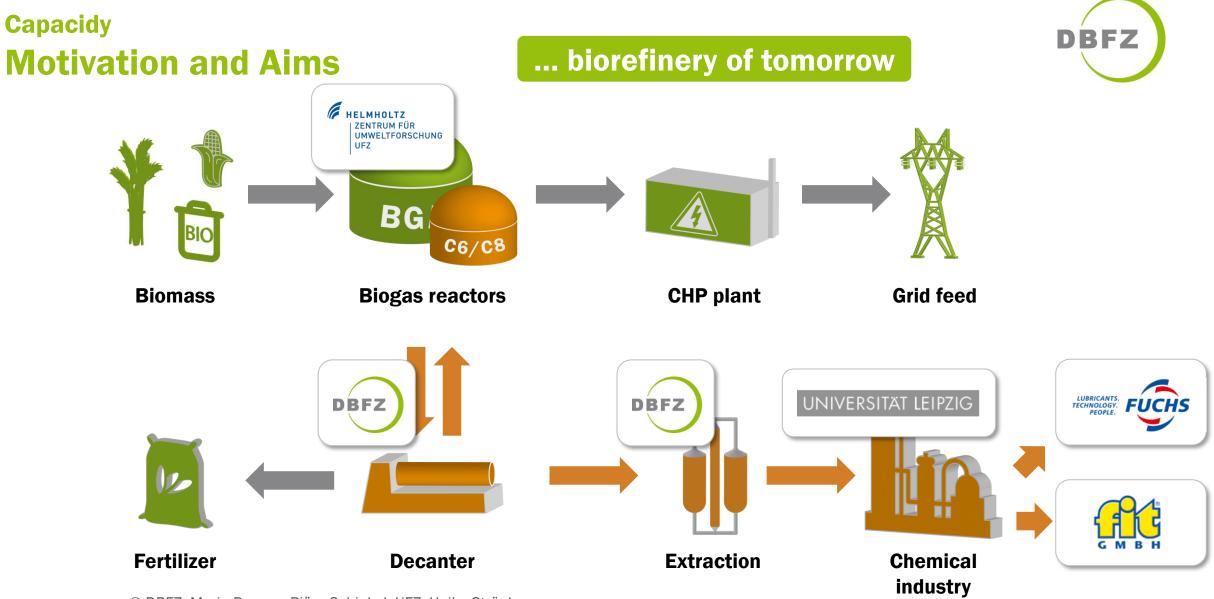
DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH

Torgauer Straße 116 D-04347 Leipzig Tel.: +49 (0)341 2434-112 E-Mail: info@dbfz.de www.dbfz.de

Exemplary projects


KomBiChem^{Pro}

Wood based biorefinery



CapAcidy

Biorefinery based on anaerobic fermentation of wet biomass

© DBFZ: Maria Braune, Björn Schinkel; UFZ: Heike Sträuber

© DBFZ: Maria Braune, Björn Schinkel; UFZ: Heike Sträuber

CapAcidy Methods in downstreaming

Fermentation broth

Solid

phase

Liquid phase

Permeate

Extract

Caproic-/Caprylic acid

Filter press/Decanter

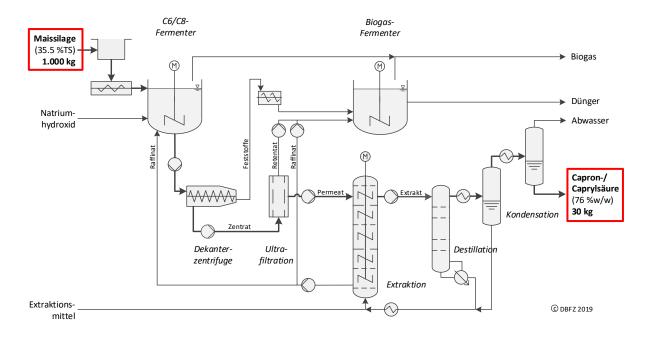
Fotos: Maria Braune/DBFZ

Membrane filtration

Extraction

Distillation

CapAcidy Methods


Concept for implementation

costs

Production

Final assessment

Verbrauchsgebundenen Kosten: 2612 [EUR/t] 6.000 €/t Kapitalgebundene Kosten: 2192 [EUR/t] 4.800 €/t nario 3.600 €/t Betriebsgebundene Kosten: 1530 [EUR/t] - 5.581 EUR/t 2.400 €/t Sonstige Kosten: 412 [EUR/t] 0 1.200 €/t Einzahlungen: 1164 [EUR/t] ä 0 €/t ú spezifische Gestehungskosten -1.200 €/t N Verbrauchsgebundenen Kosten: 2708 [EUR/t] 5.000 €/t cenario Kapitalgebundene Kosten: 1244 [EUR/t] 3.800 €/t Betriebsgebundene Kosten: 845 [EUR/t] 2.600 €/t 4.187 €/t Sonstige Kosten: 319 [EUR/t] 1.400 €/t Erlöse aus Nebenprodukten: 928 [EUR/t] 200 €/t Õ spezifische Gestehungskosten -1.000 €/t

CapAcidy Main results and their exploitation

Process for a combined material-energetic use of biomass for the production of caproic and caprylic acid as well as biogas and fertilizer was developed

- Whole process chain from idea to small product volumes for the industrial partners was demonstrated
- Continuous process and zero-waste approach was developed
- Use of complex wet biomass is possible

Fermentation:

12 % of the organic dry matter was converted into medium chain fatty acids (yield: C6-C8 = 124 ± 4 g kg-1 oTS) Rest of the biomass is available for subsequent biogas production

Downstreaming:

Complete removal of solids by filter press and ultrafiltration membrane (ceramic) without acid retention Screening for a selective, biocompatible solvent and achievement of high extraction efficiencies (C6: 65 %, C8: 96 %)

General benefits:

Integration into existing biogas plants and use of the plant infrastructure is possible

CapAcidy Main results and their exploitation

Deutsches Biomasseforschungszentrum

gemeinnützige GmbH

CapAcidy

The project team

Maria Braune Heike Sträuber (UFZ) Arne Gröngröft

In cooperation with

DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH

Torgauer Straße 116 D-04347 Leipzig Tel.: +49 (0)341 2434-112 E-Mail: info@dbfz.de www.dbfz.de

Deutsches Biomasseforschungszentrum

gemeinnützige GmbH

Thanks for your attention!

Contact

Arne Gröngröft arne.groengroeft@dbfz.de T.: +49 (0) 341 2434 - 446 DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH

Torgauer Straße 116 D-04347 Leipzig Tel.: +49 (0)341 2434-112 E-Mail: info@dbfz.de www.dbfz.de