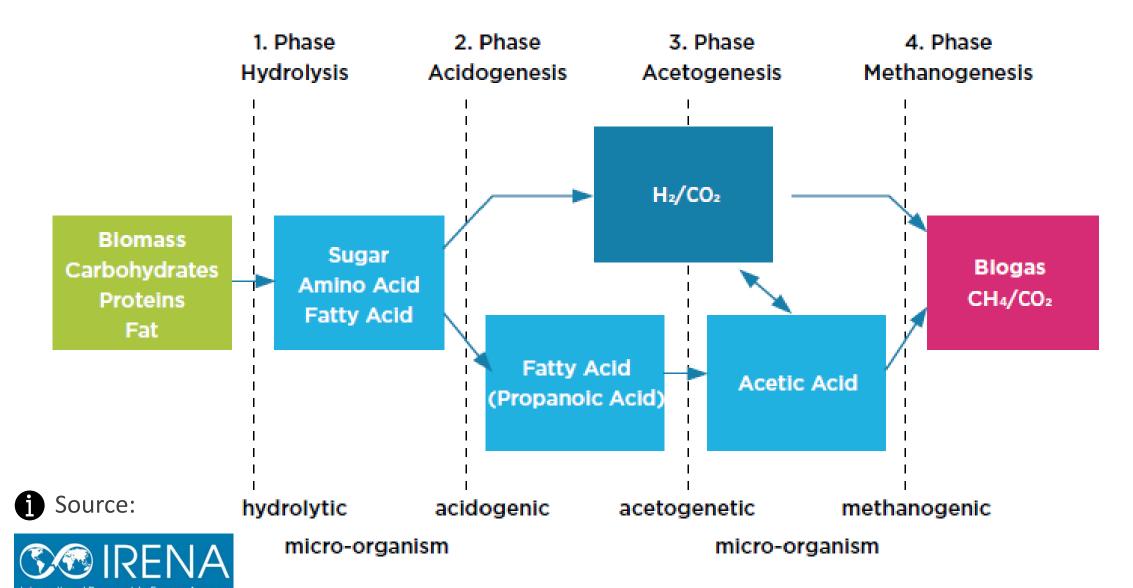


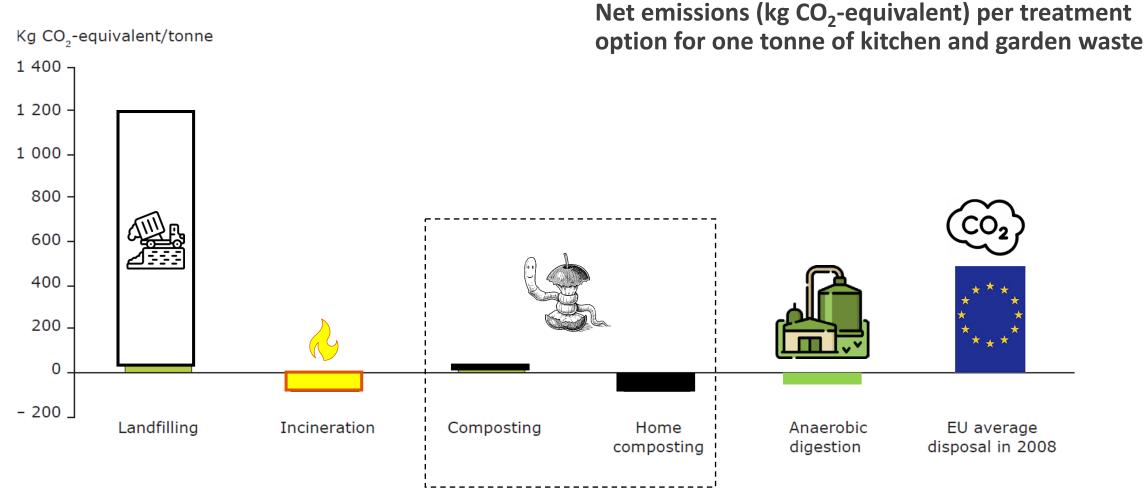
Bioenergy training: Biogas

Alessandro Carmona, PhD <a>D

December the 11th, 2020

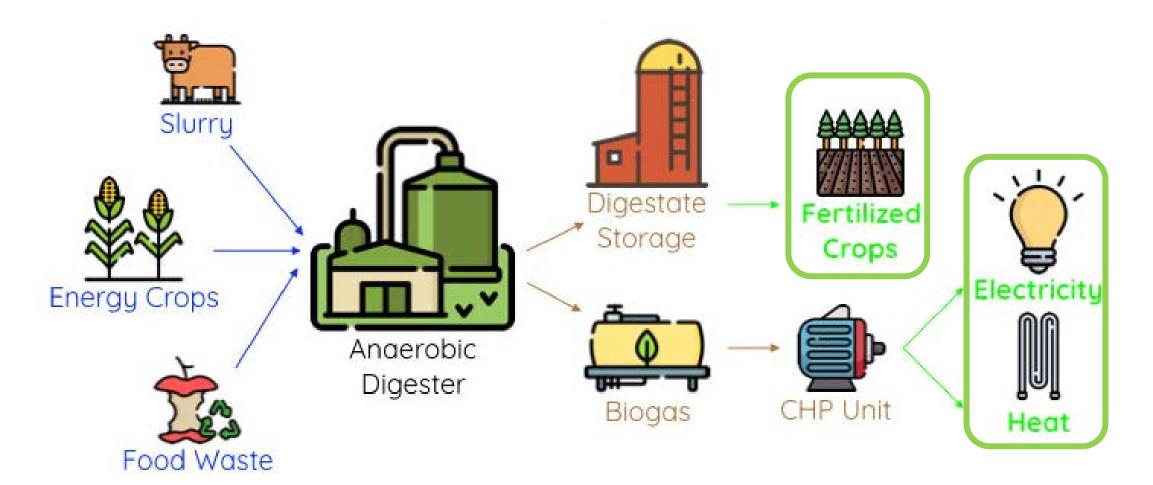

Meeting's agenda

- Current Technologies at small scale; focus on rural areas
- Current industrial examples



The anaerobic digestion process Stages of organic material degradation by microorganisms under anaerobic conditions

Importance of AD



Note: Emissions cover only the waste management stage of the life cycle.

The anaerobic digestion process Simplified diagram of the anaerobic digestion process

Current Technologies at small scale; focus on rural areas

- Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
- Pretreatment technologies (physical, chemical and biological pretreatments)
- Logistics (Costs Distance for transportation of biomass and Investment schedule)
- Storage and seasonality of biomass (biomass ensiling of biomass for AD)
- Technologies for biogas upgrading
- Good Practice for Efficient Use of Heat from Biogas Plants
- Novel added-value products from biogas besides heat and power

f Source:

Renewa

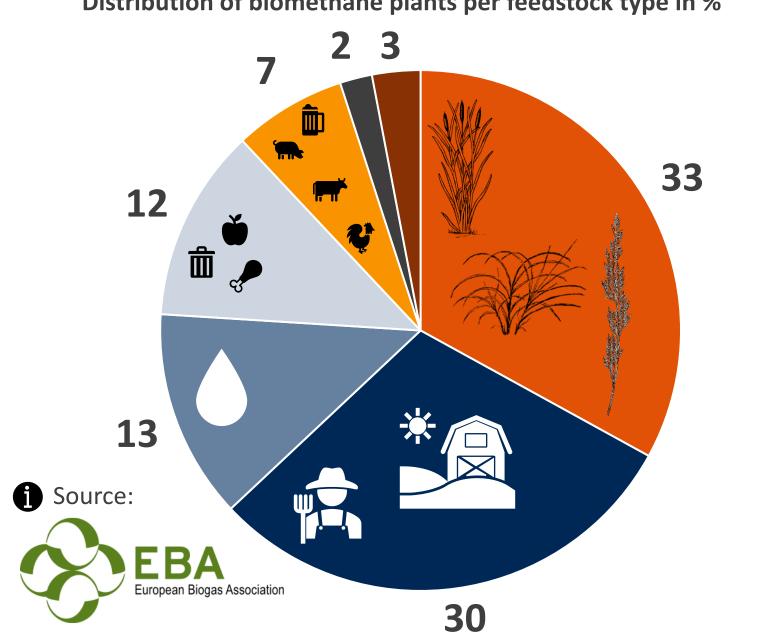
Renewable and Sustainable Energy Reviews

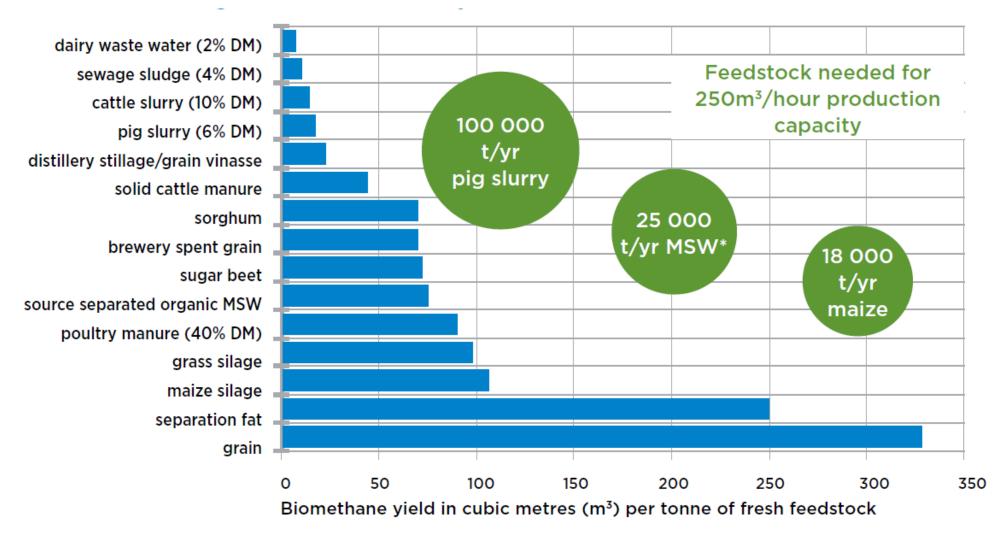
Volume 28, December 2013, Pages 900-916

An overview of biofuels from energy crops: Current status and future prospects

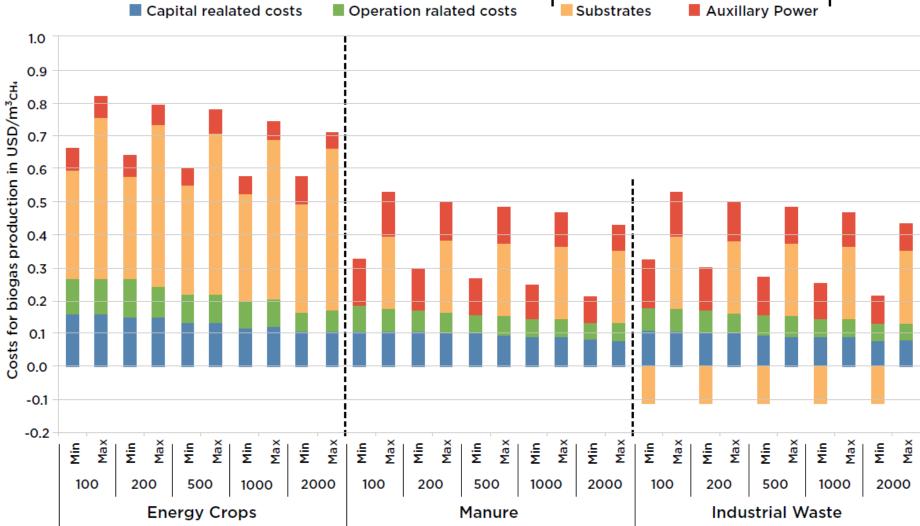
Günnur Koçar ¹ ⊠, Nilgün Civaş 🎗 🖼

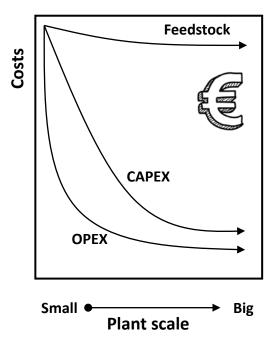
■ ENC Energy Crops




- AGR Agricultural Residues, Manure, Plant residues
- SWW Sewage Sludge
- MSW Bio- and Municipal Waste
- FAB Industrial OW: Food & Beverage Industries
- **LAN Landfill**
- **■** Unknown

Traditional technologies Biomethane yield from different feedstocks




DM = dry matter MSW = municipal solid waste t/yr = tonnes per year

Traditional technologies Related costs for different feedstocks

Capacity in m³/h raw biogas production

Current Technologies at small scale; focus on rural areas

- Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
- Pretreatment technologies (physical, chemical and biological pretreatments)
- Logistics (Costs Distance for transportation of biomass and Investment schedule)
- Storage and seasonality of biomass (biomass ensiling of biomass for AD)
- Technologies for biogas upgrading
- Good Practice for Efficient Use of Heat from Biogas Plants
- Novel added-value products from biogas besides heat and power

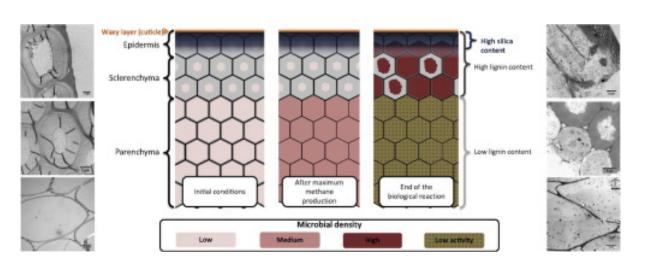
Pre-treatment technologies (1/2)

Progress in Energy and Combustion
Science
Volume 42, June 2014, Pages 35-53

Pretreatment of lignocellulosic biomass for enhanced biogas production

Yi Zheng ¹, Jia Zhao, Fuqing Xu, Yebo Li A B

	Pretreatment	Increase of accessible surface area	Decrystallization of cellulose	Solubilization of hemicellulose	Solubilization of lignin	Alteration of lignin structure	Formation of fur hydroxymethylf	•	
_ 1	Mechanical	•	•						
न्त्र ।	Irradiation	•	0	0			0		
ysical	Steam-explosion	•		•	0	•	•	1. Phase 2. Phase 3. Phase Hydrolysis Acidogenesis Acetoge	ase 4. Phase enesis Methanogenesis
P.	Liquid hot water	•	ND	•	0	0	0		
-	Catalyzed steam-explosion	•		•	•/0	•/0	Blomass	H ₃ /CO ₃	
T	Acid	•		•	0	•	Blomass Carbohydra Proteins Fat	Sugar Amino Acid Fatty Acid	Blogas CH ₄ /CO ₂
	Alkaline	•		0	•/0	•	Fat	Fatty Acid	Acetic Acid
mical	Oxidative	•	ND		•/0	•	0	(Propanoic Acid)	
	Ionic liquids	•	•	0				hydrolytic acidogenic acetogene	acetogenetic methanogenic
eu	Thermal acid	•	ND	•			•	micro-organism n	nicro-organism
Š	Thermal alkaline	•	ND	0	•/0	•	0		
_	Thermal oxidative	•	ND	0	•/0	•	0		
. ↓	Ammonia fiber explosion	•	•	0	•	•	0		
	Biological pretreatment	•	ND	•	•	•			


^a ● = major effect, ○ = minor effect, ND = not determined, and blank = no effect.

Y. Zheng et al. / Progress in Energy and Combustion Science xxx (2014) 1–19

Dynamic observation of the biodegradation of lignocellulosic tissue under solid-state anaerobic conditions

J.-C. Motte *, F. Watteau b. S. R. Escudié *, J.-P. Steyer *, N. Bernet *, J.-P. Delgenes *, C. Dumas *, S. R.

Pre-treatment technologies (2/2): "biological ones"

U. Brémond et al.

Renewable and Sustainable Energy Reviews 90 (2018) 583-604

Table 5
Biological pretreatments: Effect on biogas and methane yield and existing full-scale technology in function of the feedstock.

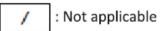
		Agricultural waste				MSW	Sludge
		Lignocellulose rich	Easily biodegradable	OFMSW	FW	Landfill	(WAS)
	Protease			-/+	-/+		++
S	Lipase	/		-/+	-/+		-/+
Enzymes	Carbohydrase	++ Methaplus® – Optimash®	+ Methaplus® – Optimash®	-/+	-/+	++	++
	Lignin-modifying	++				++	
obic	Two-Stage	-/+	+ Bioplex process	+ Gicon® - Biomet®	+ Gicon® - Biomet®	/	++ Monsal™ ADT
Anaerobic	Enhanced two-stage	+				/	
	Ensiling	+		/	/	/	/
u	Simple aeration	++ Pile composting		-		-/+	++
Aerobic	Pure culture	+++		+		/	/
Aer	Consortia (solid or liquid)	+++ Methalyse® - Bacteriometha®		+		/	

Renewable and Sustainable Energy Reviews Volume 96, July 2018, Pages 583-404

Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale

Ulysse Bremond 3, 5, Raphaelle de Buyer 3, Jean-Philippe Steyer 5, Nicolas Bernet 5, Hélène Carrere 5

+/++/+++: Lab or pilot scale positive results -/--: Lab scale negative results


: Unexplored field with expected positive results

: Positive results with *existing full-scale technologies*

: Unexplored field with expected negative results

Current Technologies at small scale; focus on rural areas

- Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
- Pretreatment technologies (physical, chemical and biological pretreatments)
- Logistics (Costs Distance for transportation of biomass and Investment schedule)
- Storage and seasonality of biomass (biomass ensiling of biomass for AD)
- Technologies for biogas upgrading
- Good Practice for Efficient Use of Heat from Biogas Plants
- Novel added-value products from biogas besides heat and power

Traditional technologies An agricultural scheme of the anaerobic digestion process

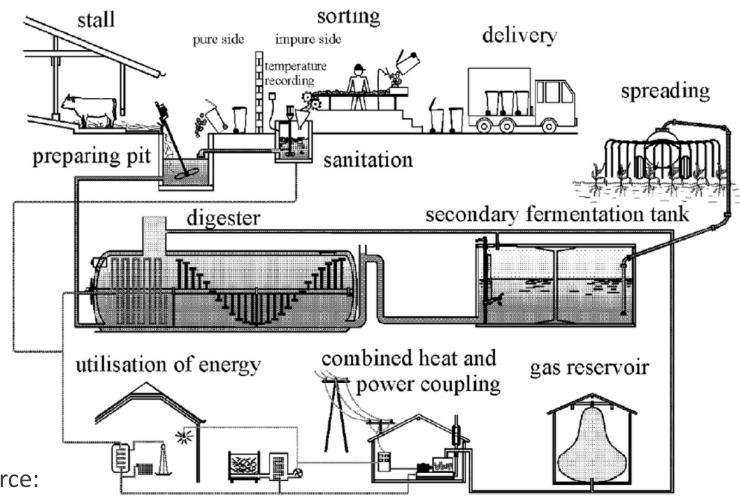
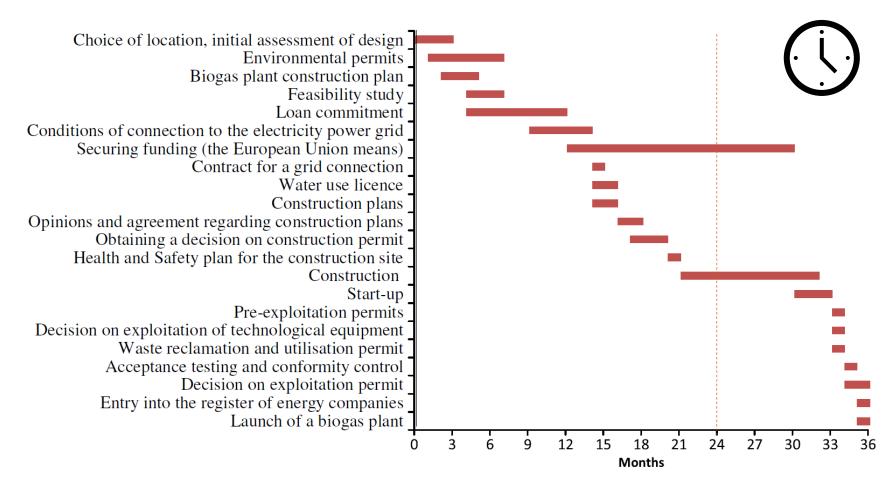
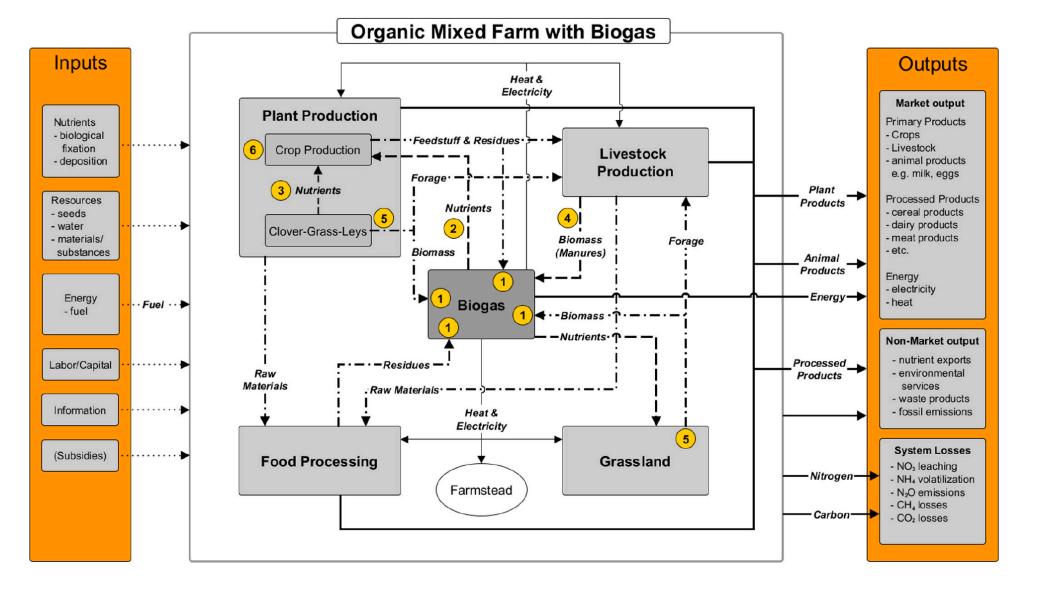


Table 1 Production of biogas and energy from selected plants.

Type of feedstock	Yield of fresh mass $[Mg ha^{-1}]$	Production of biogas $[m^3 ha^{-1}]$	Energy yield [GJ ha ⁻¹]
Maize	30-50	6 050-6 750	87–145
Lucerne	25-35	3 960-4 360	85-94
Rye	30-40	1 620-2 025	35-43
Sugar beet - root	40-70	10 260	220
Sunflower	30-50	2 430-3 240	52-70
Rape	20-35	1 010-1 620	22-37

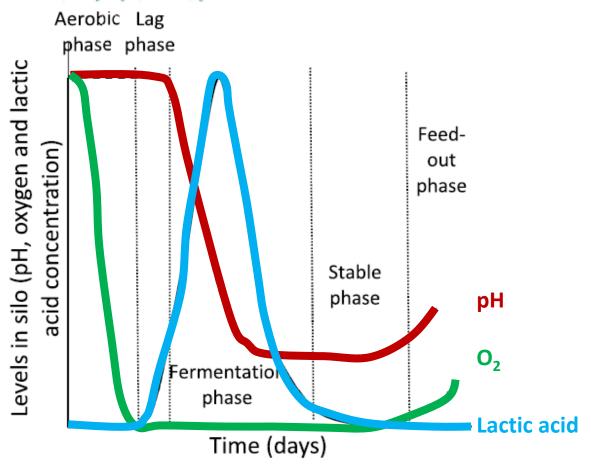

newable and Sustainable Energy Reviews Volume 58, May 2016, Pages 69-74

Traditional technologies Investment schedule of an agricultural biogas plant in Poland


Renewable and Sustainable Energy Reviews

Current Technologies at small scale; focus on rural areas

- Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
- Pretreatment technologies (physical, chemical and biological pretreatments)
- Logistics (Costs Distance for transportation of biomass and Investment schedule)
- Storage and seasonality of biomass (biomass ensiling of biomass for AD)
- Technologies for biogas upgrading
- Good Practice for Efficient Use of Heat from Biogas Plants
- Novel added-value products from biogas besides heat and power



Storage and seasonality of biomass through Ensiling

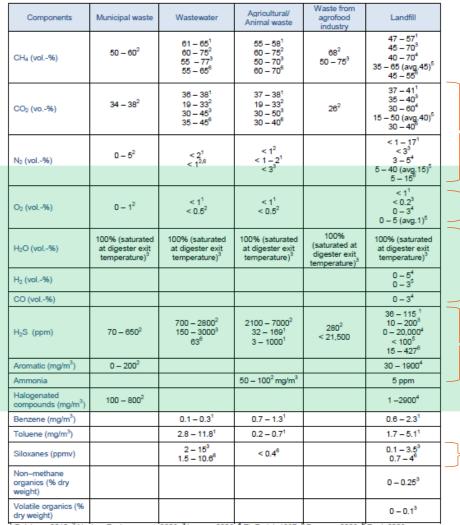
f Source:

Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields

Raffaella Villa ^a △ , Lelia Ortega Rodriguez ^b, Cecilia Fenech ^b, Ogemdi Chinwendu Anika ^{a, c}

Biomass and Bioenergy

Ensiling for biogas production: Critical


parameters. A review

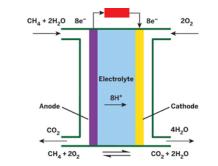
Current Technologies at small scale; focus on rural areas

- Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
- Pretreatment technologies (physical, chemical and biological pretreatments)
- Logistics (Costs Distance for transportation of biomass and Investment schedule)
- Storage and seasonality of biomass (biomass ensiling of biomass for AD)
- Technologies for biogas upgrading
- Good Practice for Efficient Use of Heat from Biogas Plants
- Novel added-value products from biogas besides heat and power

Traditional technologies

Biogas composition and Upgrading technologies

Consequences:


Decrease in the specific calorific value

Explosion risk

Decrease in CH₄ concentration

Corrosion in pipelines, compressors, engines

Silicone oxide deposits: Abrasion & malfunctioning ofEngines

Samples extracted from

this zone

Volatile Methylsiloxanes in the Environment pp 131-157 | Cite as

Presence of Siloxanes in Sewage Biogas and Their Impact on Its Energetic Valorization

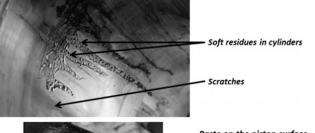
Laver on the

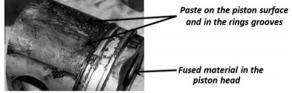
chamber wall

Authors

Authors and affiliations

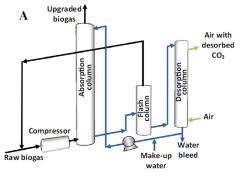
N. de Arespacochaga 🔀 , J. Raich-Montiu, M. Crest, J. L. Cortina



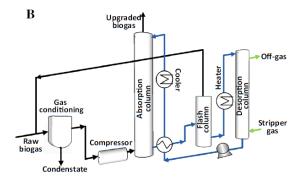

B

Silica deposit on spark plugs

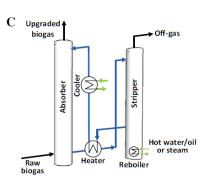

Damages caused by siloxanecontaining gas on reciprocating

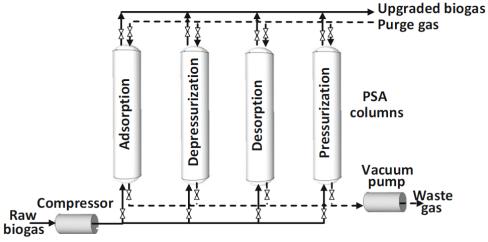

Combustion of siloxane-rich biogas in the blade wheels of microturbines

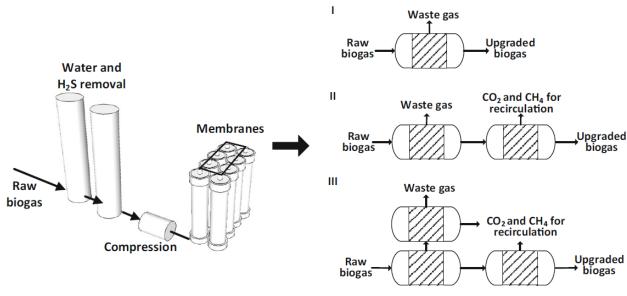
Why upgrading?



Silica deposits observed on domestic boilers

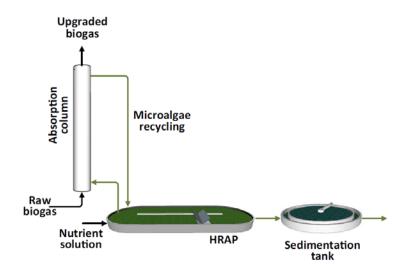

Biogas upgrading


Water scrubbing


Organic solvent scrubbing

Chemical scrubbing

Pressure swing adsorption



A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading

Raúl Muñoz [™], Leslie Meier, Israel Diaz & David Jeison

Reviews in Environmental Science and Bio/Technology 14, 727–759(2015) Cite this article

5866 Accesses 219 Citations Metrics

Photosynthetic biogas upgrading

Biogas upgrading

Industrial example 1

BRUCK AN DER LEITHA (AUSTRIA)

MEMBRANE UP-GRADING OF BIOGAS TO **BIOMETHANE FOR GRID INJECTION**

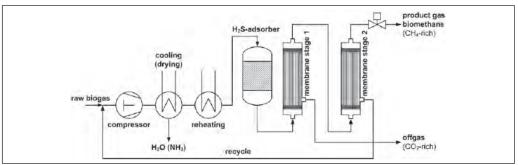


Figure 2: Schematic diagram of the main steps in the membrane up-grading process at Bruck.

Table 1; Summary of the biogas plant size and output data

Second digesters 2 x 5,000 m³ CHP 2 x 836 kWal 100 m3 CH₄/h Biomethane

Biogas upgrading

Industrial example 2

Demo plant at CIAM (Zaragoza) 272 m²

(Recycling)

Sorting

FRUIT RIPENING

BIOGAS

PHA production (mixed culture) Extraction

SCL-PHA

Table 1: Process parameters of biogas upgrading technologies

Technology (Company)	Electricity demand (kWh _e /m³ raw biogas)	Heat demand (kWh _{th} /m³ raw biogas)	Methane losses
Pressure Swing Adsorption (Carbotech)	< 0.19	0	< 1.5%
Water Scrubber (Malmberg)	0.2 - 0.23	0	≤ 1%
Water Scrubber (Greenlane)	0.17 - 0.23	0	< 1.0%
Physical Scrubber ^a (Haase)	0.23 - 0.27	O c	≤ 1.0%
Chemical Scrubber ^b (MT Biomethane)	0.09	0.6	≤ 0.1%
Separation by Membranes (Axiom)	0.24	0	≤ 5.0%
Separation by Membranes (Evonik, > 1 stages) ^d	< 0.2	0	< 1.0%

Sources: Adler (2014); Evonik (n.d.); information from companies

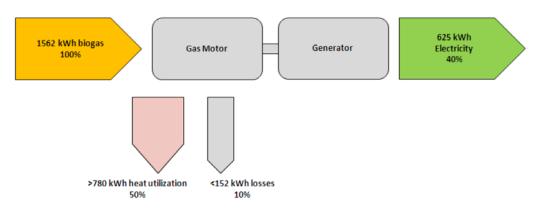
a. using an organic solvent

b. using a solvent based on amines

c. requiring heat for regeneration of organic solvent, for which heat recovery from compression and off-gas treatment can help cover heat demand

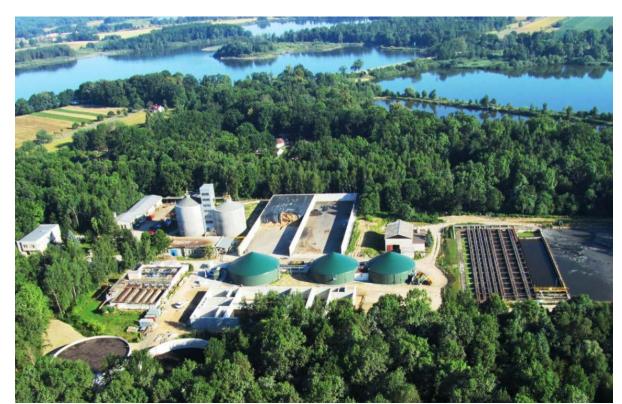
d. numbers from company product flyers (2016)

Current Technologies at small scale; focus on rural areas


- Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
- Pretreatment technologies (physical, chemical and biological pretreatments)
- Logistics (Costs Distance for transportation of biomass and Investment schedule)
- Storage and seasonality of biomass (biomass ensiling of biomass for AD)
- Technologies for biogas upgrading
- Good Practice for Efficient Use of Heat from Biogas Plants
- Novel added-value products from biogas besides heat and power

Example 1: District heating for residential houses in Margarethen am Moos, Austria

Characteristics			
Commissioning date	2005		
Input substrate	Mainly pig manure, Sudan grass, Forage rye, maize		
Annual biogas production	ca. 2.1 million m ³		
Annual electricity production	ca. 4,300 MWh		
Annual district heating sales volume	ca. 4,000 MWh		
Installed power	625 kW _{el} /1.2 MW _{th}		
Investment	ca. 3 million EUR		



Example 2: Heating supply to a SPA center in Trebon, Czech Republic

Characteristics		
Commissioning date	December 2009	
Installed power	1 MW _{el}	
Process	Two-stage digestion with a retention time of 120 days	
Input	Maize and grass silage, pig slurry	
Heat utilisation	Heat supply to a spa and a residential building (5,000 MWh/a)	
Investment	5 million EUR	

Example 3: Use of heat in aquaculture in Affinghausen, Germany

	Characteristics
Commissioning date	2006
Installed power	500 kW _{el}
Heat utilisation	Shrimp farm
Investment into the biogas pipeline	80,000 EUR

Example 4: Digestate drying in Azienda Agricola Andretta farm in Marcon, Italy

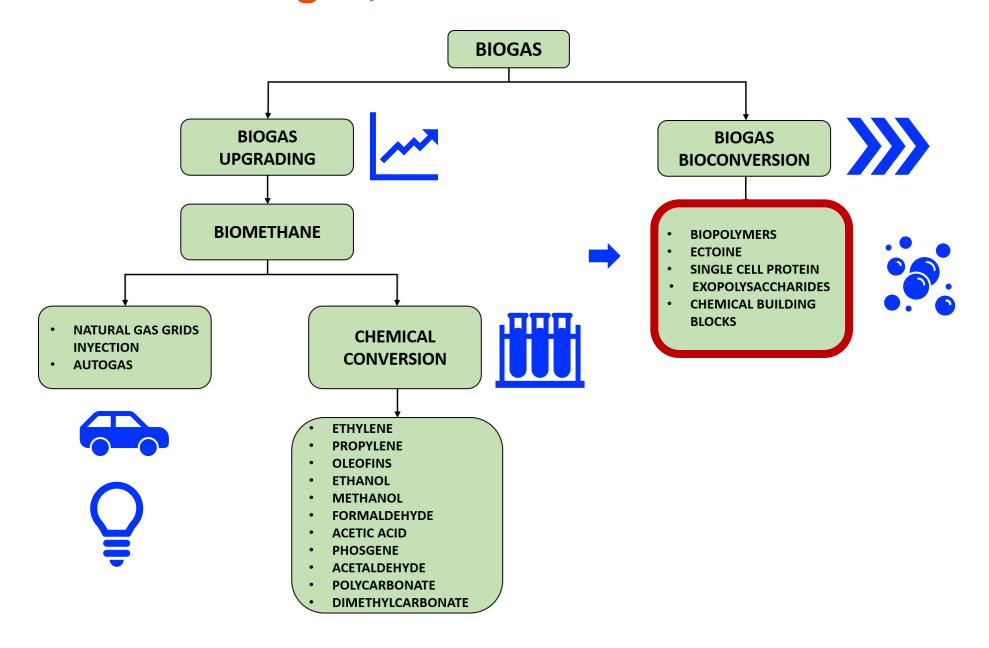
	Characteristics		
Commissioning date	2005 for the biogas plant, 2010 for the heating system		
Installed power	800 kW _{el}		
Heat utilisation	Digestate drying		
Input/output	Sludge and biomass; organic dry matter and ammonium sulfate		

Example 5: Heating of greenhouses in Rumbula, Latvia

Characteristics			
Commissioning date of landfill gas collection plant	October 2002		
Installed power	5.25 MW _{el} 6.15 MW _{th}		
Feedstock	Landfill gas from municipal and industrial waste		
Heat utilisation	In total 80% of heat is used for heating offices, infiltrate reactor, hot water preparation and heating the greenhouse complex.		
CO₂ savings	7,600 tons/year		

Example 6: Heat supply to a residential area in Poderwijk, the Netherlands

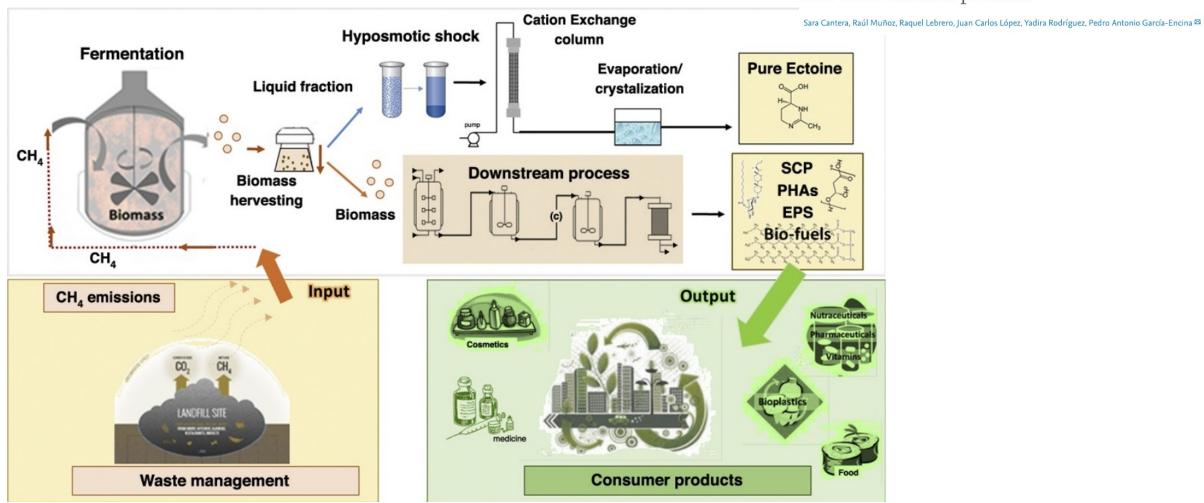
Characteristics			
Substrates	Manure (>50%), maize, grass and waste products from food industry		
Treating capacity	30,000 m ³ /year		
Digesters	2 x 2,500 m ³ + 1 post-digester		
Digester type	Continuously stirred tank reactor		
Retention time and temperature	50 days, 37 °C		
Biogas pipe	Length 5.6 km, diameter 250 mm		
СНР	0.25 MW _{el} (on farm) 1.06 MW _{el} and 1.27 MW _{th} (in residential area)		
CO ₂ emission savings	5,100 t/year		



Current Technologies at small scale; focus on rural areas

- Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
- Pretreatment technologies (physical, chemical and biological pretreatments)
- Logistics (Costs Distance for transportation of biomass and Investment schedule)
- Storage and seasonality of biomass (biomass ensiling of biomass for AD)
- Technologies for biogas upgrading
- Good Practice for Efficient Use of Heat from Biogas Plants
- Novel added-value products from biogas besides heat and power

Novel technologies/trends?


Novel technologies/trends?

Current Opinion in Biotechnology Volume 50, April 2018, Pages 128-135

Technologies for the bioconversion of methane into more valuable products

Ectoine

1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid

A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira

Erwin A. GALINSKI¹, Heinz-Peter PFEIFFER² and Hans G. TRÜPER¹

¹ Institut für Mikrobiologie; and

$$\begin{array}{c|c} CH_2 & CH_2 & CH_2 \\ \downarrow & I & \downarrow & II & \downarrow \\ CH_3 & \underline{N} & COOH & CH_3 & \underline{N} & COOH \\ \end{array}$$

(I) 1,45,6-Tetrahydro-

(II) 3,4,5,6-Tetrahydro-

-2-Methyl-4-Pyrimidinecarboxylic acid

- Water soluble solute with a low molecular weight
- Protection mechanism to provide an osmotic balance to a wide number of halotolerant bacteria
- High effectiveness as stabilizer of enzymes, DNA-protein complexes and nucleic acids
- Ectoine has a value in the pharmaceutical industry of approximately 1000€/kg and a global consumption of 15000 tones/year

² Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität, Bonn

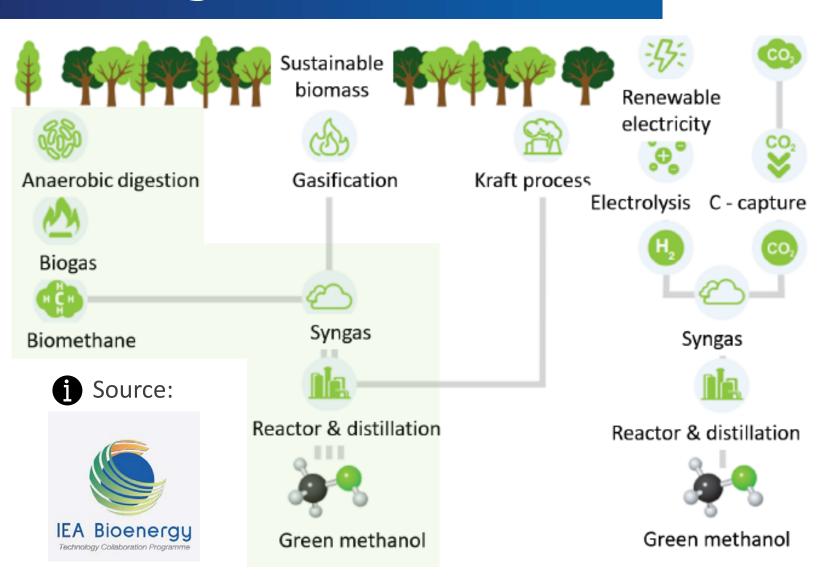
TO THE PARTY OF TH

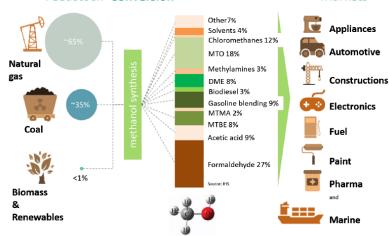
Universidad de Valladolid

from urban waste streams
IN PHOTOBIOREFINERIES
with the help of
PURPLE PHOTOTROPIC BACTERIA

 0.02 m^3

 $0.005 \, \text{m}^3$



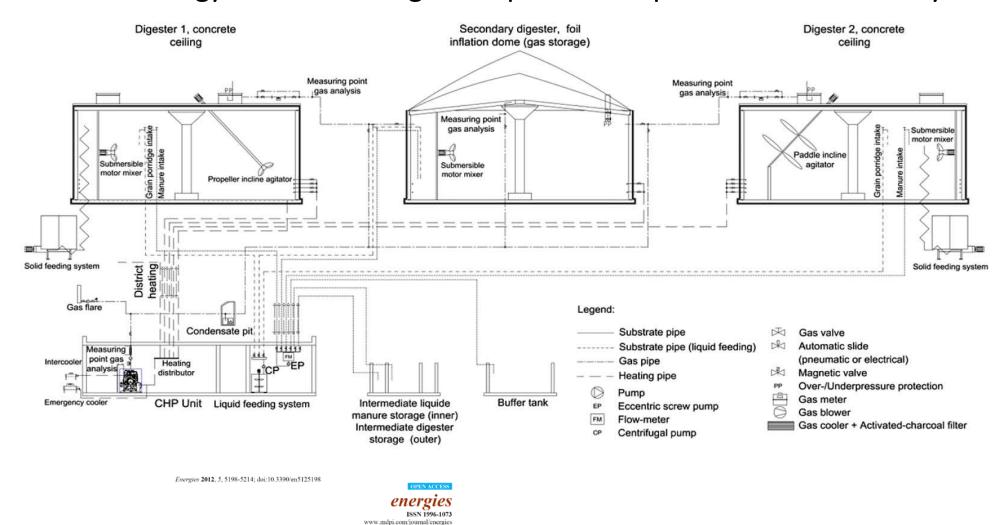

The upscaling of DEEP PURPLE

Green methanol from biogas in Denmark

Feedstock Conversion Derivatives Products Markets

2019: Global Methanol Demand = 83 Million Metric Tons or 27.6 billion gallons

SECTION 2

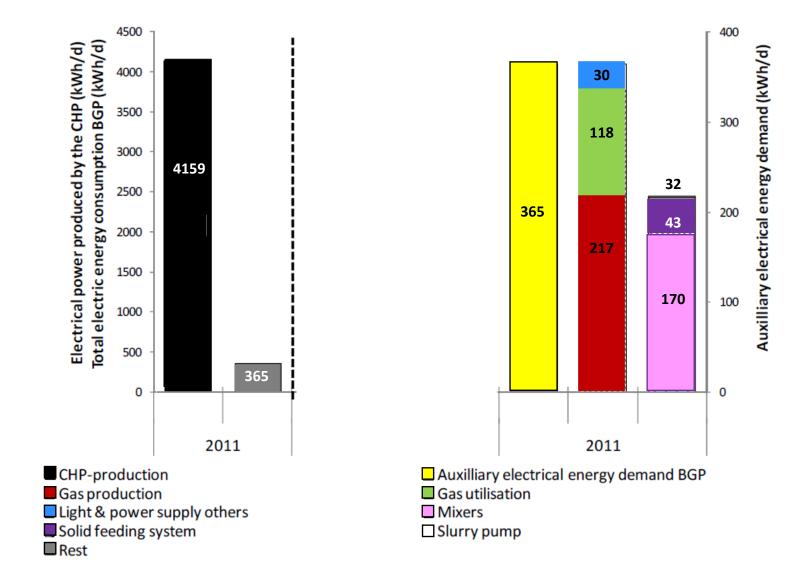

Current industrial examples

Biogas production technologies

- Drivers: Energy demand for digestion production processes and auxiliary facilities
- Success cases: Digestion of own residues
- Broadening the raw materials used as feedstock

Current industrial examples

Drivers: Energy demand for digestion production processes and auxiliary facilities


Electric Energy Consumption of the Full Scale Research Biogas Plant "Unterer Lindenhof": Results of Longterm and Full Detail Measurements

Hans-Joachim Naegele *, Andreas Lemmer, Hans Oechsner and Thomas Jungbluth

Current industrial examples

Electrical energy production and consumption of the entire BGP case for 2010 and 2011

Energies 2012, 5, 5198-5214; doi:10.3390/en5125198

Article

Electric Energy Consumption of the Full Scale Research Biogas Plant "Unterer Lindenhof": Results of Longterm and Full Detail Measurements

Hans-Joachim Naegele *, Andreas Lemmer, Hans Oechsner and Thomas Jungbluth

SECTION 2

Current industrial examples

Biogas production technologies

- Drivers: Energy demand for digestion production processes and auxiliary facilities
- Success cases: Digestion of own residues
- Broadening the raw materials used as feedstock

Success cases: Digestion of own residues

Example 1: MORE THAN 10 YEARS PRODUCTION OF FOSSIL FREE AUTOMOTIVE FUEL AND CERTIFIED DIGESTATE FROM FOOD WASTE VERA PARK in helsingborg, sweden

Facts & Figures

Organic waste capacity 160 000 tons/year

Methane in raw gas 65–72% Biogas production 80 GWh

Digestate production 145 000 tons

Digester tanks 2 x 3000, 1 x 6000 m³

Post-digestion tanks 2 x 1000 m³

Digester temperature 37 °C Digestate pipeline 10 km

Three upgrading units:

PSA 350 Nm³/h

Water scrubbers 650, 1400 Nm³/h

Operational start-up 1996 Refurbishment doubling cap 2007 Refurbishment doubling cap 2014

Success cases: Digestion of own residues

Example 2: Nutrient recovery from digestate and biogas utilisation by up-grading and grid injection

Input	Tonnes/year
Pig manure	30,000
Industrial waste	15,000
Biowaste	16,000
Total	61,000

Output

Solid digester output	13,000
Liquid fertilizer	10,000
Permeate	> 30,000
Total	53,000

FACTS

- Treatment of manure, biowaste and industrial biogenic waste
- Total biogas production corresponding to 3.4 Mio m³/year
- Biomethane injection into the gas grid replacing
 19 GWh natural gas annually

Success cases: Digestion of own residues

Example 3: Pioneering biogas farming in Central Finland Farm scale biogas plant produces vehicle fuel, heat, electricity and bio-fertilizer

Biogas reactor	Reactor volume Cow manure Confectionary by-products Fat Post-storage tank	1000 m ³ 2000 m ³ /year 200 m ³ /year 600 m ³ /year 1500 m ³
Biogas (raw)	CH ₄ content	62-64 %
CHP		25 kW _{el} 50 kW _{th}
Gas boiler		80 kW _{th}
Upgrading to traffic fuel	Capacity	50 Nm ³ /h of raw biogas
	Electricity consumption	1.2-1.4 kWh/kg
	Water consumption	10 liter/kg
	CH ₄ content	95% ± 2%
End-products	Electricity	75 MWh/year
	Heat	150 MWh/year
	Biomethane for traffic fuel	1000 MWh/year

SECTION 2

Current industrial examples

Biogas production technologies

- Drivers: Energy demand for digestion production processes and auxiliary facilities
- Success cases: Digestion of own residues
- Broadening the raw materials used as feedstock

Broadening the raw materials used as feedstock

Example 2: Linko gas a reference plant for centralized co-digestion of animal manure and digestible wastes in Denmark

Animal manure 630 tons/day
Organic wastes 140 tons/ day

Biogas production 19.7 mill.Nm³/year(2012)

Total digester capacity 14600 m³ Process temperature 53°C

estauriantian MCD

Pasteurisation MGRT 10 hours at 53°C

Utilization of biogas 1121 kW biogas engine (1)
Utilization of biogas 1047 kW biogas engine (2)

Utilization of biogas 1033 kW biogas engine (3)

Transport vehicles 4 x 30 m³ tankers

and 1 x 25 & tanker

Investment costs 43.6 mill. DKK

16.8 mill. DKK

Krüger Ltd

1990 (mesophilic)

1999 (thermophilic)

Government grants

Operation start-up

Refurbishment

Contractor

Thank you very much for your attention

Alessandro Carmona, PhD 7

Tel.: [+34] 976 976 859 · circe@fcirce.es

www.fcirce.es 7

December the 11th, 2020