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The anaerobic digestion process

Stages of organic material degradation by microorganisms under anaerobic conditions
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Importance of AD

Net emissions (kg CO,-equivalent) per treatment

Kg CO,-equivalent/tonne option for one tonne of kitchen and garden waste
1 400 -
1 200 -+
1 000 -+
800 A
600 - ‘@:% | |
A== : :
400 : '
i |
200 - ! :
: |
0 :
1 ! !
- 200 _ ! :
Landfilling Incineration ! Composting Home ! Anaerobic EU average
! composting ! digestion disposal in 2008
1 1
Note: Emissions cover only the waste management stage of the life cycle.

Qcirce

\
0 SO Urce: European Environment Agency ‘:":}\;‘)} :A


https://www.eea.europa.eu/publications/waste-opportunities-84-past-and
https://www.eea.europa.eu/publications/waste-opportunities-84-past-and

The anaerobic digestion process

Simplified diagram of the anaerobic digestion process
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Current Technologies at small scale; focus on rural areas

Traditional technologies

Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
Pretreatment technologies (physical, chemical and biological pretreatments)

Logistics (Costs Distance for transportation of biomass and Investment schedule)

Storage and seasonality of biomass (biomass ensiling of biomass for AD)

Technologies for biogas upgrading

Good Practice for Efficient Use of Heat from Biogas Plants

Novel added-value products from biogas besides heat and power
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Distribution of biomethane plants per feedstock type in % An overview of biofuels from energy crops:

Current status and future prospects
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https://www.sciencedirect.com/science/article/pii/S1364032113005625?via%3Dihub

Traditional technologies @ source: [S] INFNVA

Biomethane yield from different feedstocks e

dairy waste water (2% DM)
sewage sludge (4% DM) Feedstock needed for
cattle slurry (10% DM) 250m3/hour production
pig slurry (6% DM) 100 000 capacity

distillery stillage/grain vinasse . t/yr
solid cattle manure pig slurry
sorghum 25 000
brewery spent grain t/yr MSW*
sugar beet

source separated organic MSW
poultry manure (40% DM)
grass silage

maize silage

separation fat

grain

0 50 100 150 200 250 300 350
Biomethane yield in cubic metres (m3) per tonne of fresh feedstock

DM = dry matter MSW = municipal solid waste t/yr = tonnes per year
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Feedstock

A

Traditional technologies

Related costs for different feedstocks Consumptionl related costs
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Pre-treatment technologies (1/2)

Effect of pretreatment on the compositional and structural alteration of lignocellulosic biomass. (Adapted from Hendriks and Zeeman [29]).°

Progress in Energy and Combustion "=

Science .
e 41, June 014, Pages 16,81

@ Source: L

Pretreatment of lignocellulosic biomass for
enhanced biogas production
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Pre-treatment technologies (2/2): “biological ones”

U. Brémond et al.

Table 5

Biological pretreatments: Effect on biogas and methane yield and existing full-scale technology in function of the feedstock.

Agricultural waste
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https://www.sciencedirect.com/science/article/pii/S1364032118301990?via%3Dihub

Current Technologies at small scale; focus on rural areas

Traditional technologies

Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
Pretreatment technologies (physical, chemical and biological pretreatments)

Logistics (Costs Distance for transportation of biomass and Investment schedule)

Storage and seasonality of biomass (biomass ensiling of biomass for AD)

Technologies for biogas upgrading

Good Practice for Efficient Use of Heat from Biogas Plants

Novel added-value products from biogas besides heat and power



Traditional technologies

An agricultural scheme of the anaerobic digestion process
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Agricultural biogas plants in Poland -

selected technological, market and
environmental aspects

Table 1

Production of biogas and energy from selected plants.

Source: [23]
Type of feedstock Yield of fresh mass Production of biogas Energy yield

[Mgha™’] [m* ha™'] [Glha™']

Maize 30-50 6 050-6 750 87-145
Lucerne 25-35 3 960-4 360 85-94
Rye 30-40 1620-2 025 35-43
Sugar beet - root  40-70 10 260 220
Sunflower 30-50 2 430-3 240 52-70
Rape 20-35 1010-1 620 22-37

‘ L circe


https://www.sciencedirect.com/science/article/pii/S1364032115015361?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1364032115015361?via%3Dihub
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Traditional technologies

Investment schedule of an agricultural biogas plant in Poland

Choice of location, initial assessment of design |
Environmental permits [ m—
Biogas plant construction plan ||
Feasibility study | —
Loan commitment | I
Conditions of connection to the electricity power grid _ E—
Securing funding (the European Union means) O
Contract for a grid connection _ - |
Water use licence | — §
Construction plans | - ‘
Opinions and agreement regarding construction plans | —
Obtaining a decision on construction permit —
Health and Safety plan for the construction site | -
Construction I
Start-up | | —
Pre-exploitation permits | | -
Decision on exploitation of technological equipment _ -
Waste reclamation and utilisation permit _ -
Acceptance testing and conformity control | | -
Decision on exploitation permit | § -
Entry into the register of energy companies _ ‘ -
Launch of a biogas plant _

0 3 6 9 12 15 18 21 24 27 30 33 36
Months

Renewable and Sustainable Energy Reviews ,
Volume 2013, Pages 4290-4900 g

16, lssue 7, Septamber 2012, Page g |

Agricultural biogas plants in Poland: Investment

process, economical and environmental aspects, A .
0 SO u rce « Dbiogas potential -y (—\-I rce

Bardomie] Iglifiski % B, Roman Suczkowski, Anna lglifiska, Marcin Cichosz, Grzegorz Piechata, Wajeiech Kujawski


https://www.sciencedirect.com/science/article/pii/S1364032112003127?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1364032112003127?via%3Dihub
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Farm biogas production in organic agriculture:
System implications

Torsten Siegmeier 2 &, Benjamin Blumenstein &, Detlew Maller 2

Agricultural Systems ;.:.\ T
Volume 139, October 2015, Pages 196-209

Market output

Primary Products

- Crops

- Livestock

-animal products
e.g. milk, eggs

Processed Products
- cereal products

- dairy products
-meat products
-etc.

Energy
- electricity
- heat

Non-Market output

- nutrient exports

- environmental
services

- waste products

- fossil emissions

System Losses
- NO, leaching
- NH. volatilization
- N,O emissions
- CH, losses
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Traditional technologies

Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
Pretreatment technologies (physical, chemical and biological pretreatments)

Logistics (Costs Distance for transportation of biomass and Investment schedule)

Storage and seasonality of biomass (biomass ensiling of biomass for AD)

Technologies for biogas upgrading

Good Practice for Efficient Use of Heat from Biogas Plants

Novel added-value products from biogas besides heat and power



Renewable and Sustainable Energy Reviews
Volume 134, December 2020, 110401

ELSEVIER

Ensiling for anaerobic digestion: A review of key
considerations to maximise methane yields

Raffaclla Villa ® & &, Lelia Ortega Rodriguez °, Cecilia Fenech ©, Ogemdi Chinwendu Anika * ¢
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Biomass and Bioenergy
Wolume 94, November 2016, Pages 94-104
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Review

o . . . * Harvesting « Feedstock « Target markets
Ensiling for biogas production: Critical * Storage * Pretreatment * Adaptability to demand
parameters. A review * Transportation * Operating conditions flutuations

Roben Teixeira Franco B, Plerre Buffitre B, Rémy Bayard &
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Traditional technologies
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https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiI4KPz5rntAhWHX8AKHV3AA7QQFjABegQIAxAC&url=https%3A%2F%2Fwww.teknologisk.dk%2F_%2Fmedia%2F52679_Report-Biogas%2520and%2520syngas%2520upgrading.pdf&usg=AOvVaw2WDIvAD5spN88VBBmiWP_Q
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https://link.springer.com/chapter/10.1007/698_2018_372

A review on the state-of-the-art of physical/chemical

B i O ga S u p g ra d i n g and biological technologies for biogas upgrading

Rail Mufioz &, Leslie Meier, Israel Diaz & David Jeison
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https://link.springer.com/article/10.1007/s11157-015-9379-1

BiogaS Upgrading Industrial example 1 ]
]

product gas
H:S-adsorber Jl—:— : {hé:r::tr;a}na
BRUCK AN DER LEITHA (AUSTRIA) . s} g Table 1; Summary of the biogas plant size and output data
H g _
MEMBRANE UP-GRADING OF BIOGAS TO 3 g £ g‘laln :I?Sterfe gx g,ggg m:
raw bioges econd digesters x5, m
BIOMETHANE FOR GRID INJECTION - ! s B
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H:0 (NHy) Co " (GOerich}

Figure 2: Schematic diagram of the main steps in the membrane up-grading process at Bruck.
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https://task37.ieabioenergy.com/case-stories.html?file=files/daten-redaktion/download/Success%20Stories/success_bruck_austria2013.pdf
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Table 1: Process parameters of biogas upgrading technologies

Technology Electricity demand | Heat demand Methane
(Company) (KWh_/m? raw (kWhg,/m? raw losses
biogas) biogas)
Pressure Swing Adsorption <019 0 <15%
(Carbotech)
Water Scrubber (Malmberg) 02-023 0 = 1%
Water Scrubber (Greenlane) 0.17-0.23 0 <1.0%
Physical Scrubber® (Haase) 0.25-0.27 Oc < 1.0%
Chemical Scrubber®
(MT Biomethane) 0.09 0.6 < (01%
Separation by Membranes (Axiom) 0.24 0 < 50%
Separation by Membranes <0.2 0 <1.0%

(Evonik, > 1stages)?

Sources: Adller (2014); Evorik (n.d.); information from companies

a. using an organic solvent
b. using a solvent based on amines

c. requiring heat for regeneration of organic solvent, for which heat recovery from compression and off-gas
treatment can help cover heat demand

d. numbers from company product flyers (2016)

1@ [RENA

International Renewable Energy Agency
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https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Mar/IRENA_Biogas_for_Road_Vehicles_2017.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Mar/IRENA_Biogas_for_Road_Vehicles_2017.pdf

Current Technologies at small scale; focus on rural areas

Traditional technologies

Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
Pretreatment technologies (physical, chemical and biological pretreatments)

Logistics (Costs Distance for transportation of biomass and Investment schedule)

Storage and seasonality of biomass (biomass ensiling of biomass for AD)

Technologies for biogas upgrading

Good Practice for Efficient Use of Heat from Biogas Plants

Novel added-value products from biogas besides heat and power



Good Practice for Efficient Use of Heat from Biogas Plants

Example 1: District heating for residential houses in Margarethen am Moos, Austria ]
Characteristics
Commissioning date 2005
Input substrate Mainly pig manure, Sudan grass, Forage rye,
maize
_ Annual biogas production ca. 2.1 million m®
| _ ‘ Annual electricity production ca. 4,300 MWh
;[ : imll.“‘“”“‘wlﬂll ! S _ L | Annual district heating sales volume ca. 4,000 MWh
S | . Installed power 625 kWg/1.2 MW,

Investment ca. 3 million EUR

=~ i~ B
4.

>780 kwh heat utilization <152 kWh losses
50% 10%

€ Source: BI@GASH EAT c‘: circe
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https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjsoPWCubrtAhXrxoUKHZ7UCV0QFjAAegQIBBAC&url=https%3A%2F%2Fec.europa.eu%2Fenergy%2Fintelligent%2Fprojects%2Fsites%2Fiee-projects%2Ffiles%2Fprojects%2Fdocuments%2Fbiogasheat_good_practice_examples_for_efficient_heat_use_en.pdf&usg=AOvVaw3c8F_8qggAe78qHyT9WrGD

Good Practice for Efficient Use of Heat from Biogas Plants .

Example 2: Heating supply to a SPA center in Trebon, Czech Republic

€ Source:

BIGGASHEAT

Characteristics

Commissioning date

December 2009

Installed power

1 MW,

Process

Two-stage digestion with a retention time of 120 days

Input

Maize and grass silage, pig slurry

Heat utilisation

Heat supply to a spa and a residential building (5,000 MWh/a)

Investment

5 million EUR

‘ L circe


https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjsoPWCubrtAhXrxoUKHZ7UCV0QFjAAegQIBBAC&url=https%3A%2F%2Fec.europa.eu%2Fenergy%2Fintelligent%2Fprojects%2Fsites%2Fiee-projects%2Ffiles%2Fprojects%2Fdocuments%2Fbiogasheat_good_practice_examples_for_efficient_heat_use_en.pdf&usg=AOvVaw3c8F_8qggAe78qHyT9WrGD

Good Practice for Efficient Use of Heat from Biogas Plants |

Example 3: Use of heat in aquaculture in Affinghausen, Germany

nm Jll m

Characteristics

Commissioning date 2006

Installed power 500 KWy

Heat utilisation Shrimp farm

Investment into the biogas pipeline 80,000 EUR

€ Source: BI@GASH EAT

( L circe


https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjsoPWCubrtAhXrxoUKHZ7UCV0QFjAAegQIBBAC&url=https%3A%2F%2Fec.europa.eu%2Fenergy%2Fintelligent%2Fprojects%2Fsites%2Fiee-projects%2Ffiles%2Fprojects%2Fdocuments%2Fbiogasheat_good_practice_examples_for_efficient_heat_use_en.pdf&usg=AOvVaw3c8F_8qggAe78qHyT9WrGD

Good Practice for Efficient Use of Heat from Biogas Plants I I

Example 4: Digestate drying in Azienda Agricola Andretta farm in Marcon, Italy

Characteristics
Commissioning 2005 for the biogas plant, 2010 for the heating system
date
Installed power 800 kW
Heat utilisation Digestate drying
Input/output Sludge and biomass; organic dry matter and ammonium sulfate

( L circe


https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjsoPWCubrtAhXrxoUKHZ7UCV0QFjAAegQIBBAC&url=https%3A%2F%2Fec.europa.eu%2Fenergy%2Fintelligent%2Fprojects%2Fsites%2Fiee-projects%2Ffiles%2Fprojects%2Fdocuments%2Fbiogasheat_good_practice_examples_for_efficient_heat_use_en.pdf&usg=AOvVaw3c8F_8qggAe78qHyT9WrGD

Good Practice for Efficient Use of Heat from Biogas Plants Il

Example 5: Heating of greenhouses in Rumbula, Latvia _
. = ok .. AP "-."'4’*' ’31 Characteristics

o

Commissioning date of landfill | October 2002
gas collection plant

Installed power 5.25 MW
6.15 MW,
Feedstock Landfill gas from municipal and industrial waste
Heat utilisation In total 80% of heat is used for heating offices, infiltrate reactor,

hot water preparation and heating the greenhouse complex.

CO, savings 7,600 tons/year

>/

€ Source: BI@GASH EAT e circe


https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjsoPWCubrtAhXrxoUKHZ7UCV0QFjAAegQIBBAC&url=https%3A%2F%2Fec.europa.eu%2Fenergy%2Fintelligent%2Fprojects%2Fsites%2Fiee-projects%2Ffiles%2Fprojects%2Fdocuments%2Fbiogasheat_good_practice_examples_for_efficient_heat_use_en.pdf&usg=AOvVaw3c8F_8qggAe78qHyT9WrGD

Good Practice for Efficient Use of Heat from Biogas Plants =

Example 6: Heat supply to a residential area in Poderwijk, the Netherlands

Characteristics

Substrates Manure (>50%), maize, grass and waste products from food
industry

Treating capacity 30,000 m%year

Digesters 2x 2,500 m® + 1 post-digester

Digester type Continuously stirred tank reactor

Retention time and temperature 50 days, 37°C

| | Biogas pipe Length 5.6 km, diameter 250 mm

CHP 0.25 MW, (on farm)
1.06 MW and 1.27 MW, (in residential area)

CO, emission savings 5,100 t/year

€ Source: BI@GASH EAT Gm’rc‘e


https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjsoPWCubrtAhXrxoUKHZ7UCV0QFjAAegQIBBAC&url=https%3A%2F%2Fec.europa.eu%2Fenergy%2Fintelligent%2Fprojects%2Fsites%2Fiee-projects%2Ffiles%2Fprojects%2Fdocuments%2Fbiogasheat_good_practice_examples_for_efficient_heat_use_en.pdf&usg=AOvVaw3c8F_8qggAe78qHyT9WrGD

Current Technologies at small scale; focus on rural areas

Traditional technologies

Differences between agricultural residues and other type of feedstock for the anaerobic digestion process
Pretreatment technologies (physical, chemical and biological pretreatments)

Logistics (Costs Distance for transportation of biomass and Investment schedule)

Storage and seasonality of biomass (biomass ensiling of biomass for AD)

Technologies for biogas upgrading

Good Practice for Efficient Use of Heat from Biogas Plants

Novel added-value products from biogas besides heat and power



Novel technologies/trends?
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Novel technologies/trends?
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Current Opinion in Biotechnology
Volume 50, April 2018, Pages 128-135

lr'l SEVIER

Technologies for the bioconversion of methane

into more valuable products

Sara Cantera, Radl Mufoz, Raquel Lebrero, Juan Carlos Lépez, Yadira Rodriguez, Pedro Antonio Garcia-Encina &

Pure Ectoine

CH, emissions Input

Waste management
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https://www.sciencedirect.com/science/article/pii/S0958166917301581?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0958166917301581?via%3Dihub

%m;_ éis gi?gggm. 149, 135—139 (1985) E CtOi ne
1.4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid

A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira

Erwin A. GALINSKI', Heinz-Peter PFEIFFER ? and Hans G. TRUPER *

! Institut fiir Mikrobiologic; and
* Institut fir Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universitit, Bonn

 Water soluble solute with a low molecular weight

NGty W’ H, e Protection mechanism to provide an osmotic balance to a wide
,_l ! }H <~ P I }H number of halotolerant bacteria

cH, SN ScooH s g ~CooH High effectiveness as stabilizer of enzymes, DNA-protein complexes and
nucleic acids
e Ectoine has a value in the pharmaceutical industry of approximately

1000€/kg and a global consumption of 15000 tones/year

(1) 1456-Tetrahydro- (I) 3456-Tetrahydro-
-Z-Methyl-4-Pyrimidine carboxylic acid

——————— w
- e

& ; ---------------------- atopowe zapalenie skory

ectoSkin P7’ mv‘
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https://febs.onlinelibrary.wiley.com/doi/full/10.1111/j.1432-1033.1985.tb08903.x

RECOVER ENERGY & VALUABLE RESOURCES
-~ from urban waste streams
IN PHOTOBIOREFINERIES (
with the help of o
PURPLE PHOTOTROPIC BACTERIA

b



https://deep-purple.eu/

Green methanol from

biogas in Denmark

| &

Anaerobic digestion
Biogas

Biomethane

€ source:

IEA Bioenergy

Tachnology Coliaboration Programme

Gasification

Syngas

Reactor & distillation
29

Green methanol

Sustainable *iPkf* ’ "CO,
- biomass i Renewable
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L Al
-

Green methanol

Feedstock Conversion Derivatives Products Markets
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&
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2019: Global Methanol Demand = 83 Million Metric Tons or 27.6 billion gallons
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https://task37.ieabioenergy.com/case-stories.html?file=files/daten-redaktion/download/case-studies/Case%20Story%20DK_%20Green%20Methanol_web.pdf
http://task37.ieabioenergy.com/case-stories.html?file=files/daten-redaktion/download/case-studies/Case%20Story%20DK_%20Green%20Methanol_web.pdf

Current industrial examples

Biogas production technologies
* Drivers: Energy demand for digestion production processes and auxiliary facilities
* Success cases: Digestion of own residues

* Broadening the raw materials used as feedstock



Current industrial examples

Drivers: Energy demand for digestion production processes and auxiliary facilities
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4

|
Pl =
Srain pomcge intake

Secondary digester, foil
inflation dome (gas storage)

4P 4 '\//\J_ﬁ\:./-\\/ NN

L
oy

Solid feeding system

R |

Intermediate liquide
manure storage (inner)
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Euergies 2012, 5, S198-5214: doi:10.3390/en5 125198

OFEN ACCESS
.
N
energies
IS5N 1996-1073
www mdpi.com joumnal energies
Article

Electric Energy Consumption of the Full Scale Research
Biogas Plant “Unterer Lindenhof™: Results of Longterm and
Full Detail Measurements

Hans-Toachim Naegele *, Andreas Lemmer, ans Oechsner and Thomas Junghluth
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Current industrial examples

Electrical energy production and consumption of the entire BGP case for 2010 and 2011
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O Mixers
OSlurry pump

32
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Auxilliary electrical energy demand (kWh/d)

€ Source:

Energies 2012, 5, 5198-5214; doi: 10.3390/en5125198
-
energies

ISSN 1996-1073
www mdpi.com/journal/‘energies

Article

Electric Energy Consumption of the Full Scale Research
Biogas Plant “Unterer Lindenhof”: Results of Longterm and
Full Detail Measurements

Hans-Joachim Naegele =, Andreas Lemmer, Hans Oechsner and Thomas Jungbluth

‘ L circe


https://www.mdpi.com/1996-1073/5/12/5198
https://www.mdpi.com/1996-1073/5/12/5198
https://www.mdpi.com/1996-1073/5/12/5198
https://www.mdpi.com/1996-1073/5/12/5198
https://www.mdpi.com/1996-1073/5/12/5198

Current industrial examples

Biogas production technologies
* Drivers: Energy demand for digestion production processes and auxiliary facilities
* Success cases: Digestion of own residues

* Broadening the raw materials used as feedstock



Success cases: Digestion of own residues

Example 1: MORE THAN 10 YEARS PRODUCTION OF FOSSIL FREE AUTOMOTIVE FUEL AND CERTIFIED DIGESTATE FROM FOOD WASTE VERA
PARK in helsingborg, sweden

Facts & Figures

Organic waste capacity 160 000 tons/year

Methane in raw gas 65-72%

Biogas production 80 GWh

Digestate production 145 000 tons

Digester tanks 2 x 3000, 1 x 6000m?3

Post-digestion tanks 2 x 1000 m3

Digester temperature 37°C

Digestate pipeline 10km

Three upgrading units:

PSA 350Nm3/h

Water scrubbers 650, 1400 Nm3/h N
Operational start-up 1996 ®

Refurbishment doubling cap 2007
Refurbishment doubling cap 2014

€ source: IEA Bioenergy Task 37 Gciroe



https://task37.ieabioenergy.com/case-stories.html?file=files/daten-redaktion/download/Success%20Stories/NSR_Sweden_web.pdf

Success cases: Digestion of own residues

Example 2: Nutrient recovery from digestate and biogas utilisation by up-grading and grid injection

Input Tonnes/year
Pig manure 30,000
Industrial waste 15,000
Biowaste 16,000
Total 61,000
Output

Solid digester output 13,000
Liquid fertilizer 10,000
Permeate > 30,000
Total 53,000
FACTS

— Treatment of manure, biowaste and industrial
biogenic waste

— Total biogas production corresponding
to 3.4 Mio m3/year

— Biomethane injection into the gas grid replacing
19 GWh natural gas annually

(] T LEA Bioenergy Task 37

( L circe


https://task37.ieabioenergy.com/case-stories.html?file=files/daten-redaktion/download/Success%20Stories/success_story_switzerland2012.pdf

Success cases: Digestion of own residues

Example 3: Pioneering biogas farming in Central Finland Farm scale biogas plant produces vehicle fuel, heat, electricity and bio-fertilizer

Biogas reactor Reactor volume 1000 m3
Cow manure 2000 m3/year
Confectionary by-products 200 m3/year
Fat 600 m3/year
Post-storage tank 1500 m3
Biogas (raw)  CH, content 62-64 %
CHP 25 kWq,
50 kWi,
Gas boiler 80 kWi
Upgrading to  Capacity 50 Nm3/h of raw
traffic fuel biogas
Electricity consumption  1.2-1.4 kWh/kg
Water consumption 10 liter/kg
CH, content 95% + 2%
End-products  Electricity 75 MWh/year
Heat 150 MWh/year
Biomethane for traffic 1000 MWh/year
fuel

(] T LEA Bioenergy Task 37

‘ L circe


https://task37.ieabioenergy.com/case-stories.html?file=files/daten-redaktion/download/Success%20Stories/success-story-kalmari2012.pdf

Current industrial examples

Biogas production technologies
* Drivers: Energy demand for digestion production processes and auxiliary facilities
* Success cases: Digestion of own residues

* Broadening the raw materials used as feedstock



Broadening the raw materials used as feedstock

Example 2: Linko gas a reference plant for centralized co-digestion of animal manure and digestible wastes in Denmark

Tablel: KEY FIGURES (2012)

Animal manure
Organic wastes

Biogas production
Total digester capacity
Process temperature
Pasteurisation
Utilization of biogas
Utilization of biogas
Utilization of biogas
Transport vehicles

Investment costs
Government grants
Contractor
Operation start-up
Refurbishment

630 tons/day

140 tons/ day

19.7 mill.Nm3/year(2012)
14600 m?

53°C

MGRT 10 hours at 53°C
1121 kW biogas engine (1)
1047 kW biogas engine (2)
1033 kW biogas engine (3)
4 x 30 m?3 tankers

and 1 x 25 & tanker

43.6 mill. DKK
16.8 mill. DKK
Kriger Ltd

1990 (mesophilic)
1999 (thermophilic)

Current industrial examples
" -


https://task37.ieabioenergy.com/case-stories.html?file=files/daten-redaktion/download/Success%20Stories/succes-story-denmark_nov_13.pdf
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